立即订阅

固态锂电池(新型固态锂电池面世,兼具快充能力,有望用于手机和汽车等)

欧易app下载

OKEX欧易app下载

欧易交易所app是全球排名第一的虚拟货币交易所。

APP下载   官网注册
2024年03月20日 07:03 来源于:烟月稀财经笔记 浏览量:
研究人员发现,尽管全固态锂金属电池有望实现较高的能量密度、以及快速充电能力,但是高压氧化物正极与固体电解质(SSE,solid state

研究人员发现,尽管全固态锂金属电池有望实现较高的能量密度、以及快速充电能力,但是高压氧化物正极与固体电解质(SSE,solid state electrolyte)之间的界面不稳定性,以及锂金属负极与固体电解质界面处的锂枝晶生长,制约了这一目标的实现。


在近期一项工作中,美国马里兰大学王春生团队从这两个关键的制约因素出发,通过合理的界面设计方案,打造了具备较高能量密度的全固态锂金属电池,并成功实现了快速充电的能力。


电池的高能量密度和快充能力,是当前电子产品和电动汽车等的设备普遍需求,因此该成果有可能用于手机、电动汽车、电脑等领域。


该课题组前期的研究[1]发现临界相间过电位是衡量固体电解质界面(SEI,solid–electrolyte interphase)抑制锂枝晶生长能力的关键因素。


为了实现界面较高的锂枝晶抑制能力,就得让锂枝晶生长的驱动力,低于固体电解质界面本征的锂枝晶抑制能力。


因此,要实现高容量以及大倍率下的充放电,对于 Li/ 固体电解质界面来说,必须为其设计一个界面,以便可以同时提高锂枝晶抑制能力,以及降低锂枝晶生长的驱动力。


在高容量以及大倍率下,电池充放电的稳定性也与正极有关。对于液态锂离子电池来说,已经有大量研究证明元素 F 能在很大程度上保持 NMC811 正极的稳定性。


后来,他们选择四氟硼酸锂作为 NMC811 表面的包覆层。通过将一部分 F 从 NMC811 表面电化学迁移到 NMC811 体相,让 NMC811/Li6PS5Cl 界面、以及 NMC811 体相实现了较好的稳定性。


而要想通过界面层来降低锂枝晶生长的驱动力,就得实现 Li/ 固体电解质之间各个界面的紧密接触。以人工方式加入界面层时,会存在接触不均匀的问题。而在电化学反应过程中,原位生成的界面则能实现各个界面之间的紧密接触。


通过筛选各种金属材料,他们发现镁能同时与 Li6PS5Cl 和锂反应,而生成的 LiMgSx 以及 LiMg,可以起到粘结剂的作用,从而实现 Li6PS5Cl/ 锂化铋以及锂/锂化铋界面之间的紧密接触。


另外,通过提高金属锂与界面层的接触,可以进一步降低界面阻抗,从而进一步降低锂枝晶生长的驱动力。要想实现这一目标,通过设计多孔界面层即可实现。


而在多孔界面层中,要想进一步降低锂沉积的过电位,并使锂沉积在锂和多孔界面层之间,就要求多孔界面层具有较高的离子/电子电导率比。通过筛选各个材料,他们发现锂化铋的确能够满足这些条件。


同时,他们发现镁在锂沉积过程中会向锂负极侧迁移,这样一来就能原位得到锂化铋多孔界面层。于是,课题组使用 Mg16Bi84 作为锂/固体电解质之间的界面层。


虽然实验结果显示镁可以原位迁移,同时 Mg16Bi84 界面层具有较高的抑制锂枝晶的能力。但是,他们仍然不清楚镁迁移的内在原因。


后来,课题组通过大量表征、实验和计算,确定了相关机理。即镁的迁移主要依赖于以下几个原因:


其一,镁能和 Li+ 能形成(LiMgx)+;


其二,镁能和锂形成固溶体;


其三,在锂化铋之中,(LiMgx)+ 的迁移能垒较低,而 Mg16Bi84 界面层具有较高的抑制锂枝晶的能力。


凭借这几方面优势,让 Mg16Bi84 界面层能够有效地防止锂枝晶的生长,并能在大容量和大倍率之下,实现锂金属高度可逆的沉积和脱出。


总的来说,本次工作通过采用价格低廉的 Mg16Bi84 界面层,既让全固态锂金属电池拥有了较高的能量密度,也让其实现了快充能力。



图 | 相关论文(来源:Nature)


日前,相关论文以《全固态锂电池界面设计》(Interface design for all-solid-state lithium batteries)为题发在 Nature[2],马里兰大学万红利博士是第一作者,王春生教授担任通讯作者。



图 | 万红利(来源:万红利)


基于这款电池的设计原理,他们正在研究新的界面层,以便进一步地降低成本。另据悉,万红利目前在该课题组从事博士后研究,未来即将回国进行后续科研工作。


参考资料:

1.Nature Energy, 2023, 8,473-481

2.Wan, H., Wang, Z., Zhang, W.et al. Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w


运营/排版:何晨龙

关键词:
友情链接